THIS AGREEMENT made in triplicate on the 1st day of October, 2018.

BETWEEN:

THE CORPORATION OF THE MUNICIPALITY OF SOUTH HURON

(Hereinafter referred to as the "Municipality")

OF THE FIRST PART

– And –

HAMATHER MOTOR PRODUCTS

(Hereinafter referred to as the "Owner")

OF THE SECOND PART

WHEREAS the Owner is entering into this agreement with the Municipality dealing with the facilities, works and matters hereinafter mentioned and the provision and maintenance thereof by the Owner and any and all subsequent owners to the satisfaction of and at no expense to the Municipality, as a condition to the approval pursuant to Section 41 of the Planning Act, as amended, of site plans and drawings for a development (hereinafter called the "development") on the lands and premises of the Owner more particularly described in the Schedule "A" attached hereto in the Municipality of South Huron, in the County of Huron (the "property").

NOW THEREFORE WITNESSETH THAT in consideration of the covenants and provisions herein and for other good and valuable consideration now paid by the Municipality to the Owner (the receipt and sufficiency of which the Owner hereby acknowledges), the Municipality and the Owner covenant, agree and provide with each other that the Owner shall do and perform, at no expense to the Municipality (unless otherwise expressly provided herein), the following matters and things:

1. DRAWINGS AND CONSTRUCTION OF EXTERNAL WORKS:

The Owner shall submit to and have approved by the Municipality detailed design drawings of external road, sewer and other improvements, together with associated internal works. The Owner shall construct, prior to occupancy of any building (unless otherwise approved by the Municipality), at the Owner's expense and to the satisfaction of the Municipality, the following works:

- (a) water service;
- (b) fire protection;
- (c) sanitary sewer service;
- (d) roadways;
- (e) signage;
- (f) stormwater management;
- (g) lighting

2. <u>STORMWATER MANAGEMENT:</u>

The Owner shall undertake all work required to implement the Drainage Report prepared by AGM on July 31, 2018 and approved by the Municipal Engineer. The approved grading and servicing is incorporated into the attached Schedule "C".

The Owner agrees to maintain the property in such a manner that ensures compliance with the approved Stormwater Management Plan.

3. <u>PARKING:</u>

- (a) Parking Dimensions are sufficient and meet minimum zone provisions for size as proposed on the Site Plan incorporated as Schedule "B".
- (b)

4. <u>LIGHTING FACILITIES:</u>

All lighting of the site shall be oriented and its intensity controlled so as to prevent glare on adjacent roadways and adjacent properties to the satisfaction of the Municipality. Provide confirmation that lighting has been completed in accordance with the approved Site Plan, which forms Schedule ""B" herein.

5. LANDSCAPING

The Owner shall landscape the site and thereafter maintain the same in general conformity with the approved Site Plan attached hereto as Schedule "B", to the satisfaction of the Municipality of South Huron.

The Owner shall provide a landscape plan to the satisfaction of the Municipality of South Huron prior to implementation.

6. FIRE ROUTE DESIGNATION:

The Owner shall identify the fire route. Such fire route shall be clearly marked showing street allowances and vehicular accesses for the approval of the Fire Chief. Signs specifying that parking is prohibited in the designated fire route shall be displayed.

7. <u>'AS CONSTRUCTED' PREMISES:</u>

The Owner shall provide for the Municipality's records 'as constructed' drawings to the satisfaction of the Municipality for municipal services installed by the Owner which may, in the future, be assumed by the Municipality. These drawings shall be submitted in a satisfactory form prior to the release of any performance bond or security required by this agreement. The development shall be completed in accordance with Schedule "D" herein.

8. INSPECTION AND COMPLETION OF WORKS:

Where the Owner is required to construct certain works to be assumed by the Municipality or carry out work within a public highway, walkway or easement, the Owner shall have his Professional Engineer provide a qualified inspector acceptable to the Municipality to carry out on-site inspection of the works. Upon completion of the work and prior to requesting the Municipality to assume the works, the Owner shall supply to the Municipality, in a form acceptable, a certificate of the Owner's Professional Engineer substantially in the following form:

CERTIFICATE OF COMPLETION OF WORKS

TO: The Corporation of the Municipality of South Huron

For good and valuable consideration now paid by the Corporation of the Municipality of South Huron (hereinafter called the "MUNICIPALITY"), the receipt and sufficiency of which I/we hereby acknowledge, I/we hereby certify that the municipal services constructed pursuant to the Development Agreement between the Municipality and (Owner's Name) registered as No. ______ relating to municipal number Lot/Block No. ______ Plan No. ______ have been

- (a) inspected during construction in accordance with standard engineering practice; and
- (b) constructed in accordance with the plans and specifications approved by the Municipality.

Delivered under my/our hand and professional seal at South Huron, Ontario this _____ day of _____, 20____.

Registered Professional Engineer

The Owner acknowledges and agrees that the form of the Certificate of Completion of Works required under this paragraph may vary depending on the development's requirements.

9. <u>SUBSURFACE DRAINAGE:</u>

The Owner shall notify the Municipality, in writing, in the event that any existing sewer or drain is encountered during the progress of construction. The Owner shall have its Engineer investigate the matter and shall comply with the recommendations of the Owner's Engineer, as approved by the Municipality, with respect to the sewer or drain encountered. Such recommendations may include connecting the existing sewer to a new sewer being constructed or into another existing sewer, at no expense to the Municipality. The Owner shall also ensure that there is no interruption of any subsurface drainage flow because of construction on the site which would have an adverse effect on neighbouring properties. Should such an interruption occur, the Owner shall carry out any necessary remedial work to correct the problem as requested by the Municipality and to the satisfaction of the Municipality at no expense to the Municipality.

10. ABANDONED PRIVATE DRAIN CONNECTIONS:

The Owner acknowledges that any abandoned existing private drain connections shown on the site plans or encountered during construction are to be excavated at the street line and sealed to the satisfaction of the Municipality.

11. EXISTING PRIVATE DRAIN CONNECTIONS:

The Owner acknowledges that any existing private drain connections which are proposed for re-use are to be excavated at the street line and inspected and approved by the Municipality for such re-use.

12. <u>UNDERTAKING OF CONSTRUCTION:</u>

If no building permit is issued for the development within two (2) years of the date of the approval of the site plans and drawings pursuant to Section 41 of the Planning Act, (Ontario), as amended, or if a building permit is issued but, in the opinion of the Chief Building Official, the Owner does not seriously commence construction of the development within two (2) years from the date of the approval of the site plans and drawings pursuant to Section 41 of the Planning Act (Ontario), as amended, or if any building permit issued for this development is revoked at any time, the Municipality in its sole discretion may revoke its approval of the plans and drawings and may terminate the agreement by giving notice in writing and by registering a notice that the approval is revoked and the agreement is terminated.

13. WORK ACCORDING TO PLANS:

As the Owner has entered into this agreement as a condition precedent to the approval by the Municipality of site plans and drawings dealing with the facilities, works and matters mentioned herein, the Owner shall submit from time to time one or more plans and drawings as may be required pertaining to any of these facilities, works and matters including but not restricted to any plans or drawings specifically mentioned herein. Such plans and drawings as and when approved by the Municipality, whether before or after the date upon which this agreement is entered into, shall be treated as forming part of this agreement in the same manner and to the same extent as if such plans and drawings had been approved and actually attached to this agreement at the time that it is entered into. In all matters not herein provided for, the Owner shall develop his land and shall use the same in accordance with the applicable Zoning By-Law of the Municipality, as amended. The provisions of this agreement and any approved site plan or drawing pertaining to a facility, work or matter shall be construed and applied as complementary to each other but in the event of any conflict, the plan or drawing receiving the last approval shall govern. Without restricting the generality of this clause, the Owner shall develop his lands and shall construct works and maintain them in perpetuity in accordance with the approved Site Servicing Plan which is attached as Schedule "B".

14. WORK AT OWNER'S RISK:

All incidental matters including but not restricted to the removal and planting of trees; cutting, replacing and installing approaches; relocating utilities, pipes, poles, valves and equipment; resetting drains and manholes; and all other things required by this agreement or by the Municipality shall be carried out by the Owner at his own risk and expense. All work must be completed to the satisfaction of the Municipality and to the satisfaction of the owner of such utilities.

15. <u>COMPLETION OF WORK:</u>

All work required under this agreement, including but not restricted to asphalt surfacing, fencing, establishment of landscaping and as constructed drawings, completion of services and any other work set out herein, shall be completed or delivered, as the case may be, within a period of nine (9) months from the date of substantial completion of construction of the development as determined by the Chief Building Official. All such work shall be performed to the satisfaction of the Chief Building Official of the Municipality.

16. <u>SECURITIES:</u>

In order to ensure due performance of all work required under this agreement and to protect the Municipality in respect of its liability for holdback of costs under Section 17 of the Construction Lien Act (Ontario), as amended, for any work on municipal property, the Owner shall deposit with the Municipality prior to the issuance of a building permit, an irrevocable Letter of Credit from a chartered bank, issued in form and content satisfactory to the Municipality's Solicitor, in the amount of One Hundred Percent (100%) of the total securities as set out in Schedule "F".

All Letters of Credit shall be for a minimum guaranteed period of one (1) year or such longer time as the Municipality may decide. All Letters of Credit shall contain the following clause: "It is a condition of the Letter of Credit that it shall be deemed to be automatically extended without amendment from year to year from the present or any future expiration date thereof, unless at least thirty (30) days prior to the present or any future expiration date, we notify you in writing by registered mail that we elect not to consider this Letter of Credit to be renewable for any additional period." Unless each and every Letter of Credit is renewed as noted above, the Municipality shall have the absolute right to refuse to issue building permits and to prohibit occupancy, whether partially or fully completed, from the said date thirty (30) days prior to the expiration of that Letter of Credit.

16.1. SECURITY RELEASE

General securities outlined in Schedule "F" will be released upon the completion of all works, to the satisfaction of the Municipality of South Huron.

17. <u>DEVELOPMENT CHARGES:</u>

The Owner shall pay all development charges applicable to the development in accordance with the By-laws of the Municipality of South Huron.

18. <u>MUNICIPALITY'S RIGHT TO ENTER:</u>

The Municipality or any of its officers, servants or agents may, from time to time, at all reasonable times and upon producing proper identification, enter upon the Owner's lands and premises for the purposes of inspecting the facilities, works and matters to be provided and maintained under this agreement and for the purpose of providing or maintaining at the Owner's expense any facility, work or matter in default of the Owner providing or maintaining the same where such default has continued for fifteen (15) days or more. The Municipality, its officers, servants and agents shall not be liable to the Owner or any occupant of the lands and premises for any losses or damages of any kind whatsoever arising in any way from entry for such purposes. In the event of an emergency, the Municipality's right to enter under this provision shall not be limited to situations in which the default of the Owner has continued for more than fifteen (15) days.

19. ROAD ALLOWANCE INDEMNITY:

Except as otherwise expressly provided in this agreement, the right of the Owner to use and occupy any untravelled portions of road allowances shall, at all times, be at the will of the Municipality and the construction and maintenance of any and all curbs. pavements, plantings and other improvements or works thereon shall at all times be at the risk and expense of the Owner. The Owner shall indemnify and save harmless the Municipality and any of its officers, employees or servants from and against all actions, suits, claims, damages, demands, costs, including reasonable legal fees and disbursements, liabilities and any other claims which may be brought against or made upon the Municipality or any of its officers, employees or servants in consequence of the use and occupation of untraveled portions of road allowances by the Owner or the construction, maintenance or existence of curbs, pavements, plantings or other improvements of the Owner thereon. Any amounts owed by the Owner to the Municipality under this indemnity shall constitute a lien and charge upon the lands of the Owner and shall be collectible in like manner as municipal taxes. Without limiting the foregoing agreement to indemnify, the Municipality may, in case any such action, suit, claim or demand is brought or made against the Municipality or any of its officers, employees or servants, settle any such action, suit, claim or demand on such terms as the Municipality shall see fit, and the Owner shall thereupon forthwith pay to the Municipality the sum or sums so paid, together with such sum as shall represent the reasonable costs of the Municipality and its solicitor in defending or settling any such action, suit, claim or demand.

20. INSURANCE:

Prior to the issuance of any building permit and any commencement of work for the development, the Owner shall supply the Municipality with a certified copy of a comprehensive general liability insurance policy with limits in an amount and in a form acceptable to the Municipality. The minimum limits of such policies shall be \$5,000,000 all inclusive, but the Municipality shall have the right to set higher amounts. Such policy or policies shall be issued in the joint names of the Owner and the Municipality. The said insurance policy shall indemnify the Municipality from any loss arising from any claims for damages, injury or otherwise in connection with the work done by or on behalf of the Owner. Such insurance policy shall provide coverage for a period of at least one (1) year and shall continue until all the work required by the Owner under this Agreement is completed and, where applicable, assumed by the Municipality. The said insurance policy must also include a provision confirming that the insurance policy shall not be cancelled or materially amended without providing the Municipality with thirty (30) days' written notice of the insurer's intention to do so. The issuance of such a policy of insurance shall not be construed as relieving the Owner from responsibility for other or larger claims, if any, for which he may be held responsible.

21. <u>GENERAL INDEMNITY:</u>

The Owner shall indemnify and save harmless the Municipality and any of its officers, employees or servants from and against all actions, suits, claims, damages, demands, costs, including reasonable legal fees and disbursements, liabilities and any other claims which may be brought against or made upon the Municipality or any of its officers, employees or servants sustained or incurred by the Municipality or any of its officers, employees or servants as a result of the Municipality entering into this agreement with the Owner. Any amounts owed by the Owner to the Municipality under this indemnity shall constitute a lien and charge upon the lands of the Owner and shall be collectible in like manner as municipal taxes. Without limiting the foregoing agreement to indemnify, the Municipality may, in case any such action, suit, claim or demand is brought or made against the Municipality or any of its officers, employees or servants, settle any such action, suit, claim or demand on such terms as the Municipality shall see fit, and the Owner shall thereupon forthwith pay to the Municipality the sum or sums so paid, together with such sum as shall represent the reasonable costs of the Municipality and its solicitor in defending or settling any such action, suit, claim or demand.

22. <u>BY-LAWS:</u>

Notwithstanding any of the provisions of this agreement, the Owner shall be subject to all By-Laws of the Municipality. In the event of conflict between the provisions of this agreement and the provisions of any By-Law of the Municipality, the provisions of the By-Law prevail.

23. SUBSEQUENT OWNERS BOUND:

Subject to the provisions of the Registry Act and the Land Titles Act, the covenants, agreements, conditions and understandings therein contained on the part of the Owner shall be conditions running with the land described in Schedule "A" hereto and shall be binding upon the Owner and their heirs, estate trustees, administrators, successors and assigns, as the case may be, and subsequent owners and occupiers of the said lands from time to time (and "Owner", wherever used in this agreement, is intended and shall be construed to include such subsequent owners and occupiers).

24. SEPARATE COVENANTS:

All of the provisions of this agreement are and shall be construed and interpreted as covenants and agreements as though the words importing such covenants and agreements were used in each separate clause hereof. Should any covenant or provision of this agreement be adjudged unlawful or unenforceable, such covenant or provision shall be considered separate, distinct and severable from this agreement and the covenants and provisions of this agreement shall not be affected and shall remain fully enforceable.

25. ENFORCING PERFORMANCE OF REQUIREMENTS:

In addition to any remedy authorized or permitted by this agreement or by law, the Municipality, upon giving fifteen (15) days notice or forthwith in cases of emergency, may, in default of any matter or thing required to be done by the Owner under this agreement, do such matter or thing at the expense of the Owner and if the Municipality has incurred any expense, it may recover the expense by action, by performance bond or other security or by adding the said expenses to the tax roll and recovering same in like manner as municipal taxes. No proceeding by the Municipality under this clause and no waiver under any provision of this agreement shall prejudice the rights of the Municipality in respect of any subsequent default or any matter or thing required to be done by the Owner under this agreement. The rights of the Municipality may be enforced by any remedy authorized or permitted by the Agreement or By-Law and no such remedy shall be exclusive or dependent on any other remedy.

26. NUMBER AND GENDER:

Words importing the singular only shall include the plural; words importing the masculine only shall include the female and words importing a person shall include corporations.

27. <u>NOTICES:</u>

Any notice required or permitted to be given hereunder shall be in writing and shall be effectively given if delivered personally or sent by registered mail in the case of notice to the Municipality as follows:

Municipality of South Huron P.O. Box 759 322 Main Street South Exeter ON, N0M 1S6

And in the case of notice to the Owners, as follows:

Mr. Tim Hamather 70704 London Road Exeter, ON N0M 1S1

Any notice so given shall be deemed conclusively to have been given and received when so personally delivered or on the third (3rd) business day following the sending thereof by registered mail.

28. <u>REGISTRATION:</u>

The Owner agrees that this document shall be registered against the title to the lands affected by it and that such registration shall be done by the Municipality. The cost of such registration and associated legal fees shall be the responsibility of the Owner.

The Owner further agrees that this agreement shall have priority over all mortgages that are registered against the property and the Owner hereby undertakes to deliver an agreement postponing those mortgages to this agreement and to register the same on title.

29. <u>COSTS:</u>

Any costs incurred by the Municipality for the review, implementation and administration of this agreement (including engineering, administrative costs and legal fees) shall be borne by the Owner.

IN WITNESS WHEREOF the Municipality and the Owner hereto have hereunto affixed their Corporate Seals duly attested by the hands of their proper officers in that behalf, the day and year first written above.

THE CORPORATION OF THE MUNICIPALITY OF SOUTH HURON

Per: Maureen Cole, Mayor

Per: Rebekah Msuya-Collison, Clerk

We have authority to bind the Corporation.

SIGNED, SEALED AND DELIVERED In the presence of Hamather Motor Products

Per: Tim Hamather, Duly Authorized Officer

I have the authority to bind the Corporation.

SCHEDULE "A" LEGAL DESCRIPTION

Note: It is understood and agreed that this Schedule forms part of the Municipality's Agreement.

70736 and 70740 London Road, Exeter, ON Roll Number 010001038000000 and 010001039000000

SCHEDULE "B" SITE PLAN

9

SCHEDULE "C" SITE GRADING AND DRAINAGE PLAN Note: It is understood and agreed that this Schedule forms part of the Municipality's Agreement.

SCHEDULE "D" SECURITY TO BE PROVIDED

Note: It is understood and agreed that this Schedule forms part of the Municipality's Agreement.

ITEM	COST
Stormwater Management Plan/Storm Sewer Service	\$50,000
Sidewalks	\$2550
Roadways (Paving, Curbs, Gutter)	\$35,380
Lighting	\$10,500
Landscaping	\$5850
TOTAL	\$104,280

SCHEDULE "E" DRAINAGE REPORT Note: It is understood and agreed that this Schedule forms part of the Municipality's Agreement.

HAMATHER MOTOR PRODUCTS INC.

70736 LONDON ROAD SOUTH

DRAINAGE REPORT

July 31, 2018

3514 White Oak Road, London, ON N6E 2Z9 t. 519.685.5300 f. 519.685.5303 e. info@agm.on.ca

www.agm.on.ca

1.0 INTRODUCTION

The enclosed report summarizes the proposed stormwater drainage strategy for the proposed development at 70736 London Road South (Hwy.#4), in Exeter. The 1.20 ha site is being partially developed as an expansion to Huron Motor Products. The proposed vehicle storage and display lot will occupy a 0.42 ha area (Figure 1). A reduced copy of the Site Servicing and Grading Plan is attached.

2.0 STORMWATER MANAGEMENT

Stormwater Management will be provided to control post development peak discharge from the site for the 5 year through 100 year storm events.

2.1. Hydrologic Modeling

Stormwater runoff was determined by hydrologic modeling using MIDUSS (Microcomputer Interactive Design of Urban Stormwater Systems). This program allows the user to test the impact on new and existing systems, utilizing accepted rainfall data to represent design storms of various durations and aid in the design of SWM facilities.

The City of Stratford IDF curve parameters were used for the rainfall data. The 3 hour, Chicago Storm Distribution model, with a time to peak ratio of 0.38, was used for determining post development peak flow rates. These flows were used to calculate storage requirements for meeting Stormwater Management targets.

The modeling output can be found in Appendix A.

3.0 EXISTING DRAINAGE

To confirm the existing drainage patterns and outlets for the site, a topographic survey was completed. The total tributary drainage area to the location of the proposed expansion is 0.48 ha. Drainage for the area is in a westerly direction to London Road South with private catch basins draining the minor storm event to the fronting 450mm storm sewer (Figure 2).

Table 1 gives the predevelopment peak flows to London Road South.

Storm Event	Peak Flow (m ³ /s)
5 Year	0.030
100 Year	0.092

Table 1 - Predevelopment Flows

Plot date: Jul 31, 2018 F:\Projects\U\usborne\US\US-01\US-01-14\US-01-14-11\ENG 1354-2\CAD 2013\1354-2 Base.dwg

SCALE	HURON MOTOR PRODUCTS 70736 LONDON ROAD SOUTH	PROJECT No. 1354-2
SCALE - 1 : 300 3 0 6m	SERVICING AND GRADING	SHEET No. 01
	PLAN	PLAN FILE No.

4.0 PROPOSED DRAINAGE

The development of the site will increase the amount of hard surface, resulting in a 67% increase in imperviousness within the development area.

Post development drainage will be directed toward the onsite storm system which will consist of a number of catchbasins discharging through onsite storm sewers to an underground chamber, which will provide storage to limit post development peak discharge. The shop drawings for the chamber are included in Appendix B.

A 149mm diameter orifice located on the 375mm outlet pipe in catchbasin manhole CBMH.1 will control discharge to the existing storm sewer on London Road South. The orifice has been sized to limit the sewer discharge from the site to the predevelopment levels for the 5 to 100 year storm events

Post-Development peak flows and required storage volumes to control to the Pre Development peak flow rates are shown in Table 2.

Storm Event	Peak Flow (m ³ /s)	Storage (m ³)
5 Year	0.030	57.0
100 Year	0.054	137.5

Table 2- Post Development Flows

Site storage is comprised of the underground storage system $(131.2m^3)$, upstream pipes and manholes $(6.1m^3)$, as well as surface storage $(4.0m^3)$. These combined elements will provide the required storage for all storm events up to and including the 100 year storm. Additional storage is available within catchbasins and the respective catchbasin leads on site.

5.0 SUMMARY

Site storage has been provided to control post development peak discharge to pre development levels.

Archibald, Gray & McKay Engineering Ltd.

Lukas Grabowski Engineer-in-Training

Appendix A Hydrologic Modeling

Pre Development

•		MIDUSS Output					>"
		MIDUSS versio	n			Version 2.0	7 rev. 387"
	10	MIDUSS create	d		Frid	ay, Septemb	er 23, 2005"
	10	Units used:					IE MEIRIC"
			1_1/_11\	FIC 1354	21 ENG\ SWM\	110105105-0	mtech Model"
		Output filena	1-14-11 mo:	LING 1354-		510	arPro_2 out"
		licensee name				Jyc	larahowski"
•		Company	•				" gr ubonski
		Date & Time I	ast used	1:	6	/25/2018 at	2:08:09 PM"
' 31	TI	ME PARAMETERS"					
	5.000	Time Step"					
	180.000	Max. Storm le	ngth"				
	1500.000	Max. Hydrogra	ph"				
32	SI	ORM Chicago st	orm"				
	1	Chi cago storm					
	800.400	Constant P"					
	7.302	Exponent ("					
	0.380	Exponent C Fraction R"					
	180,000	Duration"					
•	1.000	Time step mul	tiplier"				
•	Ma	ximum intensit	y	118.3	38 mm/h	r"	
	Tc	otal depth	5	48.6	24 mm"		
	6	005hyd Hydr	ograph e	extensi on	used in th	is file"	
' 33	CA	TCHMENT 101"	~ "				
	1	Iri angul ar SC	S"				
	3	Specify value	S				
	101	No doscriptio	n"				
	16 000	% Impervious"					
	0 484	Total Area"					
	77,000	Flow Length"					
•	1.300	Overl and Sl op	e"				
•	0.407	Pervious Area					
	77.000	Pervious leng	th"				
	1.300	Pervious slop	e"				
	0.077	Impervious Ar	ea"				
	77.000	Impervious le	ngth"				
	1.300	Impervious si	ope"				
	0.250	Pervious Mann	ing n	、 ··			
	0 526	Pervious Sus	ff cooff). Ficient"			
	0.320	Pervious La/S	coeffic	rient"			
	3, 464	Pervious Init	ial abst	raction"			
	0.015	Impervious Ma	nni ng 'r	י " ו' "			
	98.000	Impervious SC	S Curve	No. "			
	0.893	Impervious Ru	noff coe	efficient"			
	0.100	Impervious la	/S_coeff	icient"			
	0. 518	Impervious In	itial at	ostraction	" <u> </u>		
	Co	U. U3U	0.000		0.000	C. M/Sec	o "
		ItChillent IUI	F				a boctaro"
	JL Ti	me of concentr	ation 3		4 254	0.404	mi nutos"
	Ťi	me to Centroid	1 1	32 907	92 343	123 065	minutes"
•	Ra	ainfall depth	2	8. 624	48.624	48.624	mm"
•	Ra	infall volume	1	97.69	37.65	235.34	C. M"
•	Ra	infall losses	2	23.080	5.661	20. 293	mm''
	Ru	noff depth	2	25.544	42.963	28.331	mm''
	Ru	noff volume	. 1	03.85	33.27	137.12	c.m"
	Ru	noff coefficie	nt (). 526	0.893	0.585	
	Ma	AXIMUM TIOW	() ()	0.026	0.020	0.030	C. m/sec"
40	HY	UKUGKAPH AOO R	unort "				
	4		0 030	0 000	0 000		
		0.030	0.030	0.000	0.000		

		MIDUSS Output				>"
		MIDUSS version		V	ersion 2.0	7 rev. 387"
		MIDUSS created		Fri da	ıy, Septemb	er 23, 2005"
	10	Units used:				ie METRIC"
		Job folder:			ne\US\US-0	1\US-01-14\"
		US-UI-14-	TIVENG 1354	-2\ENG\SWM\W		mtech Model
					Tuoye	arpre-2. out
		Li censee name:				i grabowski "
			cod	L /	()7/)010 of	2.20.40 DM"
· 21	ті		seu.	07	2//2010 at	2.29.49 PW
31	5 000	Timo Stop"				
	190,000	Max Storm Longth"				
	1500.000	Max. Storm rength Max. Hydrograph"				
' 22	1300.000 T2	"OPM Chicago storm"				
. 52	1	Chi cago storm"				
	1717 700	Coefficient A"				
	12 /72	Constant B"				
	0 764	Exponent C"				
	0.380	Fraction R"				
	180,000	Duration"				
	1,000	Time step multipli	er"			
	Ma	aximum intensity	181. (535 mm/hr		
	Tc	otal depth	92. (543 mm''		
	6	100hyd Hydrograp	h extension	used in thi	s file"	
' 33	CA	TCHMENT 101" Č				
	1	Tri angul ar SCS"				
	3	Speci fy val ues"				
	1	SCS method"				
	101	No description"				
	16.000	<u>%</u> Impervious"				
	0.484	Total Area"				
	77.000	Flow length"				
	1.300	Overland Slope"				
	0.407	Pervious Area"				
	//.000	Pervious length"				
	1.300	Pervious siope"				
		Impervious Area				
	1 200	Impervious clope"				
	0 250	Pervious Manning '	n' "			
	88 000	Pervious SCS Curve	No "			
	0 693	Pervious Runoff co	officient"			
	0 100	Pervious La/S coef	ficient"			
	3.464	Pervious Initial a	bstraction"			
	0.015	Impervious Manning	'n'"			
	98.000	Impervious SCS Cur	ve No."			
	0.941	Impervious Runoff	coeffi ci ent'	•		
	0.100	Impervious la/S co	effi ci ent"			
	0. 518	Impervious Initial	abstractio	า"		
		0.092 0.0	00 0.000	0.000	c.m/sec"	
	Ca	atchment 101	Pervi ous	I mpervious	; Total Are	a "
	Su	ırface Area	0.407	0.077	0. 484	hectare"
	Ti	me of concentration	21. 733	3. 528	18.048	minutes"
	Ţi	me to Centroid	119.962	90.300	113.959	minutes"
	Ra	intall depth	92.643	92.643	92.643	mm''
	Ra		3/6.65	/1./4	448.39	C. M
	Ra		28.484	1.105	25.073	mm "
	RU	Indii depth	04.159	85.4/8	0/.5/0	mm
	RL	Inori vorume	200.84	00.19	321.04	C. III "
	RU		0.093	0.941	0.733	c m/coo"
' 40	Ma UV	INTINUII IIUW (DDACDADH Add Dunaff	0.001	0.034	0.092	C. III/ SEC
40		Add Runoff "				
	4		92 0.00	0 000"		

Post Development

		MIDUSS Output				>"
		MIDUSS version		Ve	ersion 2.07	rev. 387"
		MIDUSS created		Fri day	, September	r 23, 2005"
	10	Units used:				TE METRIC"
					10/05/05-01	VUS-UI-14V
		Output filename	1554-2	5 vear nost	final_revi	ised_3 out"
		Licensee name		o year post		larahowski"
		Company				
		Date & Time last used	d:	6/2	27/2018 at 3	2:10:05 PM"
" 3	1 TI	ME PARAMETERS"				
	5.000	Time Step"				
	180.000	Max. Storm Length"				
	1500.000	Max. Hydrograph"				
" 3	2 ST	ORM Chicago storm"				
	1	Chicago storm"				
	860.460	Coerricient A				
	7.382	Constant B				
	0.759	Exponent C Eraction R"				
	180,000	Duration"				
	1,000	Time step multiplier'				
	Ma	ximum intensity	118.33	38 mm/hr'	I Contraction of the second	
	То	tal depth	48.62	24 mm"		
	6	005hyd Hydrograph e	extension ι	used in this	s file"	
" 3	3 CA	TCHMENT 1"				
	1	Tri angul ar SCS"				
	1	Equal length"				
	1	SUMP #1"				
	100 000	% Impervious"				
	0.056	Total Area"				
	14.000	Flow length"				
	2.000	Overl and SI ope"				
	0.000	Pervious Area"				
	14.000	Pervious length"				
	2.000	Pervious slope"				
	0.056	Impervious Area				
	2 000	Impervious rength				
	2.000	Pervious Manning 'n''				
	83 000	Pervious SCS Curve No	ר "			
	0.406	Pervious Runoff coeff	ficient"			
	0.100	Pervious Ia/S coeffic	ci ent"			
	5.202	Pervious Initial abst	traction"			
	0.015	Impervious Manning 'r	י 'ר			
	98.000	Impervious SCS Curve	No. "			
	0.893	Impervious Runoff coe	efficient"			
	0.100	Impervious la/S coeff	ricient"			
	0.518			0 000 6	m/soc"	
	Ca	tchment 1 0.000	Pervi ous	Impervious	Total Area	
	Su	rface Area (0.000	0.056	0.056	hectare"
	Ti	me of concentration	10. 893	1.344	1.344	minutes"
	Ti	me to Centroid	110. 712	87.966	87.966	minutes"
	Ra	infall depth 4	48.624	48. 624	48.624	mm''
	Ra	infall volume (0.00	27.23	27.23	c. m"
	Ra	INTALL LOSSES	28.907	6.069	6.069	mm"
	RU	norraepin poff volumo		42.555	42.555	mm c m''
	Ru Du	noff coofficient () 406	23.03	23.03	C. III ''
	Ma	ximum flow (0,000	0.073	0.073	c m/sec"
" 4	0 HY	DROGRAPH Add Runoff "	0.000	0.014	0.014	0.11/ 300
	4	Add Runoff "				
		0.014 0.014	0.000	0.000"		
"5	2 CH	ANNEL DESIGN"				
	0.014	Current peak flow	c.m/sec"			
	0.015	Manning 'n'"			1 - 0	
	0.	Cross-section type: (J=trapezoi d	dal; i=gener	ai	
	50,000	Left hank slope"				
	50.000	Right bank slope"				
	1.000	Channel depth metr	~e"			
	0.500	Gradient %"	-			
	De	pth of flow	0.03	31 metre'		
	Ve	locity	0.29	93 m/sec'		
	Ch	annel capacity	148.46	c.m/se	ec"	
 	2 Cr	ITICAL depth	0.02	28 metre'	-	
, b	з RU	JIE ZETO KOUTE Zero Poute Poach Long	ath (mot	tro)"		
	0.00				m/sec"	
		0.014	0.014	0.000 (

 40	HYDROGRAPH Combine 11	3"			
	6 Combine " 113 Node #"				
	TO ADS UNI T"				
	Maximum flow	0.014	c.m/sec		
		0.014	0. 014"		
 40	HYDROGRAPH Start - New Tri	butary"			
	2 Start - New Tributary" 0.014 0.000	0 014	0 014"		
 33	CATCHMENT 2"	0.014	0.014		
	1 Tri angul ar SCS"				
	1 SCS method"				
	2 sump #2"				
	0 129 Total Area"				
	28.000 Flow length"				
	2.000 Overland Slope"				
	28.000 Pervious Length"				
	2.000 Pervious slope"				
	15.500 Impervious Length"				
	2.000 Impervious slope"				
	0.250 Pervious Manning 'n'" 83.000 Pervious SCS Curve No."				
	0.406 Pervious Runoff coeffic	i ent"			
	0.100 Pervious la/S coefficie	nt"			
	0.015 Impervious Manning 'n'"				
	98.000 Impervious SCS Curve No				
	0.893 Impervious Runoff Coeffic	i ci ent" i ent"			
	0.518 Impervious Initial abst	racti on"			
	0.018 0.000 Catchment 2 Per	0.014 vious Imp	0.014 c.	m/sec"	
	Surface Area 0.0	59 0.0)70 C). 129	hectare"
	Time of concentration 16.	510 1.4	29 5	5.629	minutes"
	Rainfall depth 48.	624 48.	624 4	18.624	mm"
	Rainfall volume 28.	54 34.	19 6	52.73	C. M"
	Runoff depth 19.	905 5.9 719 42.	655 3	16. 405 32. 219	mm mm''
	Runoff volume 11.	57 29.	99 4	1.56	C. M"
	RUNOTT COETTICIENT 0.4 Maximum flow 0.0	06 0.8 04 0.0	193 (118 (). 6/2) 018	" c_m/sec"
 40	HYDROGRAPH Add Runoff "	0.0			0. 11/ 300
	4 Add Runoff "	0.014	0.014"		
 52	CHANNEL DESI GN"	0.014	0.014		
	0.018 Current peak flow c.	m/sec"			
	0. Cross-section type: 0=t	rapezoi dal ;	1=genera	al "	
	0.000 Basewidth metre"	,	5		
	50,000 LEFT bank slope" 50,000 Right bank slope"				
	1.000 Channel depth metre"				
	0.500 Gradient %" Depth of flow	0 034	metre"		
	Vel oci ty	0.312	m/sec"		
	Channel capacity	148.463	c.m/sec	2"	
 53	ROUTE Zero Route"	0.031	metre		
	0.00 Zero Route Reach Length	(metre)	"		
 40	U.018 U.018 HYDROGRAPH Combine 11	0.018 3''	0.014 C.	m/sec	
 	6 Combine "	•			
	113 Node #" TO ADS UNLT"				
	Maximum flow	0.033	c.m/sec	;" 	
	Hydrograph volume	65.393	C. M"		
 40	HYDROGRAPH Start - New Tri	butary"	0.033		
	2 Start - New Tributary"	0.010	0.000"		
 33	0.018 0.000 CATCHMENT 3"	0.018	0.033"		
 	1 Tri angul ar SCS"				
	1 Equal Length" 1 SCS method"				
	3 sump #3"				
	•				

		100 000	% Imperviou	c"				
		0.062	Total Area"	3				
		22.360	Flow length					
		2.000	Overl and SI	ope"				
		0.000	Pervious Ar	ea"				
		22.360	Pervious re	engtn ope"				
		0.062	Impervious	Area"				
		22.360	Impervious	length"				
"		2.000	Impervious	sl ope"				
		0.250	Pervious Ma	nni ng ' n				
		83.000	Pervious SC	S Curve	NO." fficiont"			
		0.400	Pervious La	/S coeff	icient"			
		5.202	Pervious In	itial ab	straction"			
"		0.015	Impervious	Manni ng	' n' "			
		98.000	Impervious	SCS Curv	e No."			
		0.893	Impervious	RUNOTT C	oefficient"			
		0.100	Impervious	Initial	abstraction			
		0.010	0. 015	0.00	0 0.018	0.033	c.m/sec"	
		(Catchment 3		Pervi ous	I mpervious	Total Area	
			Surface Area		0.000	0.062	0.062	hectare"
		-	ime of concen	tration	14.426	1. /80	1. /80	minutes"
		ſ	Ime to centro Painfall denth	a	115.010	88.008	88.008 18.621	minutes
		F	Rainfall volum	le	0.00	30.15	30.15	C. M''
		F	Rainfall losse	S	28.884	5.815	5.815	mm''
		F	Runoff depth		19.741	42.809	42.809	mm''
		ŀ	Runoff volume	:	0.00	26.54	26.54	C. M"
		r N	Maximum flow	rent	0.406	0.893	0.893	c m/sec"
	40	ŀ	YDROGRAPH Add	Runoff	"	0.010	0.010	0. 11/ 300
		4	Add Runoff					
	F 2			0. 01	5 0.018	0. 033"		
	52	0 015	Current nea	k flow	c m/sec"			
		0.015	Manni ng ' n'	"	0.117 300			
		0.	Cross-šecti	on type:	0=trapezoi	dal; 1=gene	ral "	
		0.000	Basewidth	metre"				
		50.000	Leit Dank S	stope				
		1 000	Channel den	oth me	tre"			
		0.500	Gradient	%"				
		[epth of flow		0.0	32 metre		
		N N	/el oci ty	.	0.2	98 m/sec		
			ritical denth	ιy	148.4	03 C.III/S 28 metre	ec "	
	53	F	ROUTE Zero Rou	te"	0.0	20 110110		
		0.00	Zero Route	Reach I e	ngth (me	tre)"		
	10		0.015	0.01	5 0. 015	0.033	c.m/sec"	
	40	1	Combine "	ombine	113"			
		113	Node #"					
			TO ADS UNIT					
		N	Maximum flow		0.0	48 c.m/s	ec"	
		ł	iyarograph voi	ume	91.9 5 0.015	35 C. M ^{**}		
	40	H	IYDROGRAPH Sta	rt - New	Tri butarv"	0.040		
		2	Start - New	Tributa	ry"			
	22		0.015	0.00	0 0. 015	0. 048"		
	33	(AICHMENI 4"	SUS.				
		1	Foual Lengt	505 h"				
		1	SCS method"					
		4	sump #4"					
		100.000	% Imperviou	IS"				
		0.060	Flow Length					
		2,000	Overland SI	ope"				
		0.000	Pervious Ar	ea"				
		22.130	Pervious le	ngth"				
		2.000	Pervious sl	ope"				
		22 120		Area Longth"				
		2.000	Impervious	sl ope"				
		0.250	Pervious Ma	nning 'n				
		83.000	Pervious SC	S Curve	No. "			
		0.406	Pervious Ru	nott coe	TTICIENT"			
		5, 202	Pervious In	itial ah	straction"			

	0.015 98.000	Impervious Manning Impervious SCS Curv	'n'" ve No." coefficient"			
	0. 100	Impervious la/S co	efficient" abstraction			
	Ca	0.015 0.00	00 0.015 Pervious	0.048 Impervious	c.m/sec" Total Area	
	SL	irface Area	0.000	0.060	0.060	hectare" minutes"
	Ti	me to Centroid	114.900	88.655	88.655	minutes"
	Ra	ainfall volume	0.00	29.17	29.17	C. M''
	Ru	noff depth	19.740	42.812	42.812	mm''
	Ru	noff coefficient	0.406	0.893	0.893	c m/sec"
40	HY	DROGRAPH Add Runoff	"	0.015	0.015	C. III/ 3CC
" 52	- ۲	0.015 0.0	15 0. 015	0. 048"		
	0.015	Current peak flow	c.m/sec"			
	0.015	Cross-section type: Basewidth metre	0=trapezoi	dal; 1=gene	eral "	
	50.000	Left bank slope"				
	1.000	Channel depth me	etre"			
	0. 500 De	epth of flow	0.0	32 metre)" ."	
	Ch	annel capacity	148.4	63 C. m/s	ec"	
" 53	RC	UTE Zero Route"	0.0	zo metre	;	
" " 40	0.00		15 0. 015	0. 048	c.m/sec"	
40 "	6	Combi ne "	115			
	Ma	TO ADS UNIT"	0.0	63 c m/s		
	Ну	drograph volume	117.6	22 C. M"		
40	HY 2	DROGRAPH Start - New Start - New Tribut:	v Tri butary"	0.003		
" 22 "	2	0.015 0.00	0.015	0. 063"		
	1	Triangular SCS"				
	1	SCS method" Sump #5"				
	100.000	% Impervious" Total Area"				
	23.400	Flow length"				
	0.000	Pervious Length"				
	2.000	Pervious slope"				
	23.400	Impervious length"				
	0. 250	Pervi ous Manni ng 'i	ו' " No "			
	0.406	Pervious Scs curve Pervious Runoff co	efficient"			
	5. 202	Pervious Initial al	ostraction"			
	98.000	Impervious SCS Curv	/e No."			
	0.893	Impervious Runott (efficient"			
	U. 518	0.016 0.00	abstraction 0 0.015	0.063	c.m/sec"	
	SL	irface Area	0.000	0.064	0.064	hectare"
	Ti	me to Centroid	14. 825 115. 494	1.829 88.713	1.829 88.713	minutes" minutes"
	Ra	ainfall volume	48.624 0.00	48.624 31.12	48.624 31.12	inm C. m''
	Ra	noff depth	28.895 19.729	5.824 42.800	5.824 42.800	mm" mm"
	RL	INDER VOLUME	0.00	21.37	21.37	U. III

	Runoff coefficient	0.406	0.89	93	0.893	"
" 40	Maximum flow HYDROGRAPH Add Runoff '	"0.000 "	0.0	16	0.016	C. M/Sec
	4 Add Runoff "	6 0.01	5	0 062"		
" 52	CHANNEL DESIGN"	0.01	5	0.003		
	0.016 Current peak flow 0.015 Mapping 'n'"	c.m/sec"				
	0. Cross-section type:	0=trapezo	i dal ;	1=genei	ral "	
	50.000 Left bank slope"					
	50.000 Right bank slope"	tro"				
	0.500 Gradient %"	ue -				
	Depth of flow Velocity	0. 0.	027 300	metre' m/sec'		
	Channel capacity	150.	842	c.m/s	ec"	
" 53	ROUTE Zero Route"	0.	024	metre		
	0.00 Zero Route Reach Ler	ngth (m 6 0.01	etre)' 6	0.063.0	m/sec"	
40	HYDROGRAPH Combi ne	113"	0	0.000 (3. 11/ 300	
	6 Combine " 113 Node #"					
	TO ADS UNIT"	0	070		~~"	
	Hydrograph volume	145.	078 014	C. m"	ec	
" " 40	0.016 0.016 HYDROGRAPH Start - New	6 0.01 Tributary	6	0. 078"		
	2 Start - New Tributar	ry"	,	0 070		
" 33	CATCHMENT 6"	0 0.01	b	0.078		
	1 Tri angul ar SCS" 1 Equal Length"					
	1 SCS method"					
	6 sump #6" 100.000 % Impervious"					
	0.065 Total Area"					
	2.000 Overland Slope"					
	0.000 Pervious Area" 23.300 Pervious Length"					
	2.000 Pervious slope"					
	0.065 Impervious Area" 23.300 Impervious Length"					
	2.000 Impervious slope"					
	83.000 Pervious SCS Curve I	No."				
	0.406 Pervious Runoff coet 0.100 Pervious La/S coeffi	fficient" icient"				
	5. 202 Pervious Initial abs	straction"				
	98.000 Impervious SCS Curve	e No."				
	0.893 Impervious Runoff co	oefficient				
	0.518 Impervious Initial a	abstractio	ņ"		<i>,</i>	
	0.016 0.000 Catchment 6	0 0.01 Pervious	6 Impe	0.078 (ervious	c.m/sec" Total Area	
	Surface Area	0.000	0.00	65	0.065	hectare"
	Time to Centroid	14.787	88.	25 710	88.710	minutes"
	Rainfall depth Rainfall volume	48.624 0.00	48.0	624 61	48.624 31.61	mm" c m"
	Rai nfal L Losses	28.893	5.82	24	5.824	mm''
	Runoff volume	19.731 0.00	42.8	800 82	42.800 27.82	mm" C. m"
	Runoff coefficient Maximum flow	0.406	0.89	93 16	0.893	" c m/sec"
40	HYDROGRAPH Add Runoff '	"	0.0	10	0.010	C. III/ 3CC
	4 Add Runoff " 0.016 0.016	6 0.01	6	0. 078"		
" 52	CHANNEL DESIGN"	c m/soc"				
	0.015 Manning 'n'"	C. III/ SEC				
	0. Cross-section type: 0.600 Basewidth metre"	0=trapezo	i dal ;	1=genei	ral "	
	50.000 Left bank slope"					
	1.000 Channel depth met	tre"				
	0.500 Gradient %" Depth of flow	0	027	metre'		
		5.				

	Vel oci ty		0.300	m/sec"	
I	Critical depth	. y	0. 024	metre"	
53	ROUTE Zero Route F	e" Peach Len	ath (metre)"	
10	0.016	0.016	0.016	0.078 c.m/sec"	
40	6 Combine "	en rama	113		
	113 Node #" TO ADS UNIT'				
	Maximum flow		0.094	c.m/sec"	
I.	Hydrograph Volt 0.016	ume 0.016	0. 016	0. 094"	
40	HYDROGRAPH Co 7 Confluence '	onfl uence	113"		
	113 Node #"				
I	Maximum flow		0. 094	c.m/sec"	
1	Hydrograph volu 0.016	Ime 0.094	172.835 0.016	C.M" 0.000"	
54	POND DESI GN"	flow	o. m/coo"	0.000	
I.	0.094 Current peak 0.012 Target outfl	OW C.I	"/sec"		
1	180.0 Hydrograph v 46 Number of st	olume ages"	C. M"		
	268.818 Minimum wate	rlevel	metre"		
I.	269.961 Maximum wate 268.818 Starting wat	er level	metre metre		
1	0 Keep Design Level Disc	Data: 1 : barge	= True; 0 = F Volume"	al se"	
	268.818	0.000	0.0"		
	268.869	0.017	7.1"		
1	268. 894 268. 920	0. 020 0. 022	10. 6" 14. 1"		
	268. 945 268. 970	0.023	17.6" 21.0"		
	268. 996	0. 024	27.7"		
I	269. 021 269. 047	0. 027 0. 028	34.3" 40.9"		
	269.072 269.097	0.029	47.4" 53.8"		
1	269. 123	0.031	60. 1"		
I	269. 148 269. 174	0.032	66. 2" 72. 3"		
	269. 199 269-224	0.034	78.2" 84.0"		
	269. 250	0.035	89.5"		
I	269. 275 269. 301	0.036	94.8" 99.7"		
	269.326 269.351	0.038	104.1" 108.2"		
	269. 377	0.039	112. 0"		
1	269.402 269.428	0.040 0.041	115. /" 119. 4"		
	269.453 269.478	0.042	123.1" 126.7"		
	269.504	0.042	130. 3"		
1	269.529 269.555	0.044 0.044	133.9" 134.1"		
	269.580 269.605	0.045	134.1" 134.2"		
	269.631	0.040	134. 3"		
I	269.656 269.682	0.047	134.4" 134.5"		
	269.707 269.732	0.048	134.6" 134.7"		
	269.758	0.050	134. 8"		
	269. 783 269. 809	0.050 0.051	134.9" 135.0"		
	269.834	0.051	135.1" 135.2"		
	269.885	0.053	135. 4"		
1	269. 910 269. 936	0.053 0.054	136. 1" 137. 3"		
	269. 961	0.054	139.5"		
	Orifice Or	ifice	Orifice Numbe	r of"	
	i nvert coef 268.620	ticie d 0.630	ameter orif 0.1490 1	I ces" . 000"	
	Peak outflow	-	0.030	c.m/sec"	

н	Maximum Level	269.110 metre"
	Maximum storage	57.031 c.m"
	Centroi dal lag	1.812 hours"
	0. 016 0. 094	0.030 0.000 c.m/sec"

			MIDUSS Output							>"
			MIDUSS version				Ve	ersion 2	2.07	rev. 387"
		10	MIDUSS created				Friday	, septe	neame	23, 2005
		10	Job folder	F·\	Proi ec	sts\II	\ushorr	ne\IIS\II4	5-01\	US-01-14\"
			US-01-14-11	\ENG	1354-2	2\ENG		DUSS\S1	tormt	ech Model"
			Output filename:		10	00 ye	ar post	t-final -	-revi	sed-6. out"
			Li censee name:						I	grabowski "
			Company	d.			6.11	010010	a+ 1	10. 10 JM
	21	тн	DALE & ITME TAST USE	ea:			6/2	2772018	at z	: 12: 13 PM
	51	5 000	Time Sten"							
		180.000	Max. Storm Length"							
		1500.000	Max. Hydrograph"							
	32	ST	ORM Chicago storm"							
		1	Chicago storm"							
		1/1/./00	Constant R"							
		0 764	Exponent C"							
		0.380	Fraction R"							
		180.000	Duration"							
		1.000	Time step multiplier			_				
		Mai	ximum intensity		181.63	35	mm/hr'	•		
		10	100byd Hydrograph	ovton	92.04 cion 1	43 160d	mm in thia	filo"		
	33	CA	TCHMENT 1"	exten	31011 0	iseu		SIIIC		
		1	Tri angul ar SCS"							
		1	Equal I ength"							
		1	SCS method"							
		100,000	Sump #1"							
		0.056	Total Area"							
		14,000	Flow Length"							
		2.000	Overl and SI ope"							
		0.000	Pervious Area"							
		14.000	Pervious length"							
		2.000	Impervious Stope							
		14,000	Impervious Length"							
		2.000	Impervious slope"							
		0.250	Pervious Manning 'n'							
		83.000	Pervious SCS Curve N	lo. "						
		0.592	Pervious Runoff coef	ticie	nt"					
		0.100	Pervious Initial abs	tract	i on"					
••		0.015	Impervious Manning '	n' "	1011					
		98.000	Impervious SCS Curve	e No."						
		0.941	Impervious Runoff co	effi c	ient"					
		0.100	Impervious Ia/S coef	ficie	nt"					
		0.518		nostra				m/soc'		
		Ca	tchment 1	, Pervi	0.000	Impe	rvi ous	Total 4	Area	п
		Su	rface Area	0.000		0.05	6	0.056		hectare"
		Ţiı	me of concentration	7.461		1.11	5	1.115		minutes"
		l I I Doi	me to Centroid	104.0	64 2	86. /	12	86. 722		minutes"
		Rai	infall volume	92.04	3	92.0 51 8	43 8	92.043 51 88		
		Rai	infall losses	38.07	0	7.63	9	7.639		mm''
		Rui	noff depth	54.57	3	85.0	03	85.003		mm''
		Rui	noff volume	0.00		47.6	0	47.60		C. M"
		Rui	noff coefficient	0.592		0.94	1	0.941		
	10	Ma: HVI	XIMUM IIOW DPOCRAPH Add Pupoff "	0.000		0.02	4	0.024		C. m/sec
	40	4	Add Runoff "							
			0.024 0.024	ļ	0.000		0. 000"			
	52	CH	ANNEL DESIGN"							
		0.024	Current peak flow	c.m/	sec"					
		0.015	Manning 'n'"	$0 + r_0$	nozola		1 0000	col "		
		0,000	Basewidth metre"	u=ti a	heroid	<i>,</i> 10	-gener	ai		
		50.000	Left bank slope"							
		50.000	Right bank slope"							
		1.000	Channel depth met	re"						
		0.500	Gradient %"		0.07	00	motrol			
			locity		0.03	30 35	m/sec'			
		Cha	annel capacity		148.46	53	C. m/se	ec"		
		Cri	itical depth ´		0.03	34	metre'			
	53	RO	UIE Zero Route"	ath	(- ma \ "				
		0.00		ig th		ne)		m/soc'		
			0.024 0.024		5.024			J. 11/ 3CC		

 40	HYDROGRAPH Combine 113	3"		
	6 Combine " 113 Node #"			
	TO ADS UNIT"			
	Maximum flow	0.024	c.m/sec"	
	0. 024 0. 024	0. 024	0. 024"	
 40	HYDROGRAPH Start - New Tril	outary"		
	2 Start - New Tributary" 0.024 - 0.000	0 024	0 024"	
 33	CATCHMENT 2"	0.024	0.024	
	1 Tri angul ar SCS"			
	1 SCS method"			
	2 sump #2"			
	0 129 Total Area"			
	28.000 Flow length"			
	2.000 Overland Slope" 0.059 Pervious Area"			
	28.000 Pervious Length"			
	2.000 Pervious slope"			
	15.500 Impervious Length"			
	2.000 Impervious slope"			
	0.250 Pervious Manning 'n'" 83.000 Pervious SCS Curve No."			
	0.592 Pervious Runoff coeffici	ent"		
	0.100 Pervious la/S coefficier	nt" stion"		
	0.015 Impervious Manning 'n'"			
	98.000 Impervious SCS Curve No.	" -:		
	0. 941 Impervious Runoii coeffici	ent"		
	0.518 Impervious Initial absti	acti on"		
	0.036 0.000 Catchment 2 Peru	0.024 /ious Imm	0.024 c.m/s pervious Tota	sec" al Area "
	Surface Area 0.0	59 0.0	070 0. 12	29 hectare"
	Time of concentration 11.3 Time to Centroid 108	308 1.1 672 86	185 4.72 734 94	21 minutes" 396 minutes"
	Rainfall depth 92.0	643 92.	. 643 92. 6	643 mm"
	Rainfall volume 54.3	38 65.	. 13 119.	.51 C.M"
	Runoff depth 54.	742 85.	. 153 71. 3	327 mm''
	Runoff volume 32.	13 59.	. 87 92. (DO C.M"
	Maximum flow 0.0	72 0.9 13 0.0	941 0.78 030 0.03	82 °
 40	HYDROGRAPH Add Runoff "			
	4 Add Runoff " 0.036 0.036	0 024	0 024"	
 52	CHANNEL DESI GN"	0.024	0.024	
	0.036 Current peak flow c.r	n/sec"		
	0. Cross-section type: 0=ti	apezoi dal ;	; 1=general "	
	0.000 Basewidth metre"		-	
	50.000 Right bank slope"			
	1.000 Channel depth metre"			
	Depth of flow	0.044	metre"	
	Vel oci ty	0.371	m/sec"	
	Channel capacity Critical denth	148.463	C.M/SEC" metre"	
 53	ROUTE Zero Route"	0.040	ine tr e	
	0.00 Zero Route Reach Length	(metre))" 0.024.c.m/s	soc"
 40	HYDROGRAPH Combine 11	0.030 3"	0.024 C. 1173	560
	6 Combine "			
	TO ADS UNIT"			
	Maximum flow	0.058	c.m/sec"	
	нуагодгарћ volume 0.036 0.036	139.600 0.036	с.m ["] 0.058"	
 40	HYDROGRAPH Start - New Tril	outary"	0.000	
	2 Start - New Tributary"	0 036	0 058"	
 33	CATCHMENT 3"	0.000	0.000	
	1 Tri angul ar SCS" 1 Equal Length"			
	1 SCS method"			
	3 sump #3"			

		100 000	% Impervious"					
		0.062	Total Area"					
		22.360	Flow length"					
		2.000	Overl and SI op	e"				
		0.000	Pervious Area					
		22.360	Pervious Teng	un o"				
		0.062	Impervious Ar	ea"				
		22.360	Impervious le	ngth"				
"		2.000	Impervious sl	ope"				
		0.250	Pervious Mann	ing 'n				
		83.000	Pervious SCS	Curve ff coo	NO." fficiont"			
		0.392	Pervious La/S	coeff	icient"			
		5.202	Pervious Init	ial ab	straction"			
"		0.015	Impervious Ma	nni ng	' n' "			
		98.000	Impervious SC	S Curv	e No."			
		0.941	Impervious Ru	NOTT C	OETTICIENT" fficiont"			
		0.100		itial	abstraction	. "		
		0.010	0. 026	0.00	0 0.036	0.058	3 c.m/sec"	
		(Catchment 3		Pervi ous	Imperviou	is Total Are	a "
			Surface Area		0.000	0.062	0.062	hectare"
		-	lime of concentr	ation	9.881	1.4/6	1.4/6	minutes"
		L L L L L L L L L L L L L L L L L L L	nme to centrold Painfall denth		106.998	87.229	87.229	minutes
		F	Rainfall volume		0.00	57.44	57.44	C. M''
		F	Rainfall losses		38.152	6.942	6.942	mm''
		F	Runoff depth		54.491	85.700	85.700	mm''
		ŀ	Runoff volume		0.00	53.13	53.13	C. M"
		I N	Aunoii coeiiicie Maximum flow	nı	0.592	0.941	0.941	c m/sec"
	40	ŀ	IYDROGRAPH Add R	unoff	"	0.020	0.020	0.111/300
"		4	Add Runoff "					
	50		0.026	0.02	6 0.036	0.058	8"	
	52	0 026	HANNEL DESIGN	flow				
		0.015	Manni ng ' n' "	1100	0. 11/ 300			
"		0.	Cross-section	type:	0=trapezoi	dal; 1=ger	neral "	
		0.000	Basewidth	metre"				
		50.000	Dight bank SIO	pe ope"				
		1 000	Channel denth	ope me	tre"			
		0.500	Gradi ent %"	ine				
		[Depth of flow		0. C)39 metr	e"	
			/el oci ty		0.3	842 m/se	ес" (ааа"	
			Channel Capacity		148.4	103 C.III/ 135 metr	Sec "e"	
	53	F	ROUTE Zero Route		0.0		0	
		0.00	Zero Route Re	ach le	ngth (me	etre)"		
	10			0.02	6 0. 026	0.058	3 c.m/sec"	
	40	г 6	Combine "	bine	115			
		113	Node #"					
		_	TO ADS UNIT"					
		N	Naximum flow	~	0.0)84 C.m/	'sec"	
		Г	0. 026	0.02	6 0.026	0.084	l	
	40	ŀ	HYDROGRAPH Start	- New	Tri butary"			
		2	Start - New T	ributa	ry"			
	22	(0.00	0 0.026	0.084	t	
	33	1	Triangular SC	S "				
		1	Equal length"	0				
		1	SCS method"					
		4	sump #4"					
		100.000	% Impervious"					
		22 130	Flow Length"					
		2.000	Overland Slop	e''				
		0.000	Pervious Area					
		22.130	Pervious leng	th"				
		2.000	Lupervious SLOP	ย คล"				
		22, 130	Impervious A	nath"				
		2.000	Impervious sl	ope"				
		0.250	Pervious Mann	ing 'n				
		83.000	Pervious SCS	Curve	NO."			
		0.592	Pervious Kuno	IT COE	icient"			
		5. 202	Pervious Init	ial ab	straction"			

	0.015 98.000	Impervious M Impervious S	lanni ng CS Curve	'n'" e No."				
	0. 941 0. 100	Impervious R Impervious I	unoff co a/S coe	oeffi ci ent" ffi ci ent"				
	0.518	Impervious I 0.025	nitial a	abstraction	1" >	0.084	. m/sec"	
	Ca	tchment 4		Pervious	Impe	rvious 0	Total Area	" hectare"
	Ti	me of concent	rati on d	9.819	1.46	7 11	1.467	minutes"
	Ra	infall depth		92.643	92.6	43	92.643	mm"
	Ra	infall losses		38.149	6.95 85.6	, 6 86	6. 956 85 686	mm"
	Ru	noff volume	ont	0.00	51.4	1	51.41	C. M"
. 10	Ma	ximum flow		0.000	0.02	5	0. 025	c.m/sec"
40 '	4	Add Runoff "		5 0.026		0 084"		
52	CH	IANNEL DESI GN"	0.02	0.020)	0.004		
	0.025	Manning 'n'"	. II OW	C. m/sec	dol	1	ool "	
	0.000	Basewi dth	metre"	U=trapezoi	dai ;	i=genei	rai "	
	50.000 50.000	Right bank si	ope" I ope"					
	0.500	Gradient %	n me	tre"				
	De Ve	pth of flow locity		0.0	38	metre' m/sec'		
	Ch	annel capacit itical depth	У	148.4 0.0	63)35	c.m/se metre'	ec"	
53	RC 0.00	UTE Zero Rout Zero Route R	e" leach Lei	ngth (me	etre)"			
40	HY	0. 025 DROGRAPH Co	0.02 mbine	5 0. 025 113")	0.084 (c.m/sec"	
	6 113	Combine " Node #"						
	Ма	TO ADS UNIT" ximum flow		0.1	09	c.m/se	ec"	
	Ну	drograph volu 0.025	me 0.02	244.1 5 0.025	46 5	с.m" 0.109"		
40	НҮ 2	DROGRAPH Star Start - New	t - New Tributa	Tri butary" ry"				
' '33	CA	0.025 TCHMENT 5"	0.00	0 0.025)	0. 109"		
	1 1	Triangular S Equal length	CS"					
	1 5	SCS method" Sump #5"						
	100. 000 0. 064	% Impervious Total Area"						
	23.400 2.000	Flow length" Overland Slo	pe"					
	0.000 23.400	Pervious Are Pervious len	a" gth"					
	2.000 0.064	Pervious slo Impervious A	pe" rea"					
	23.400 2.000	Impervious I Impervious s	ength" I ope"					
	0.250 83.000	Pervious Man Pervious SCS	ning 'n' Curve l	No. "				
	0. 592 0. 100	Pervious Run Pervious Ia/	off coe ⁻ S coeffi	ffi ci ent" i ci ent"				
	5.202 0.015	Pervious Ini Impervious M	tial ab: Ianning	straction" 'n'"				
	98.000 0.941	Impervious S Impervious R	CS Curve unoff c	e No." pefficient"				
	0. 100 0. 518	Impervious I Impervious I	a/S coe nitial	fficient" abstraction	ı"			
	Ca	0.027 tchment 5	0.00	0 0.025 Pervious	; Impe	0. 109 (rvi ous	c.m/sec" Total Area	
	Su Ti	nface Area me of concent	ration	0.000	0.06	4 7	0.064 1.517	hectare" minutes"
	Ti Ra	me to Centroi infall depth	d	107. 305 92. 643	87.3 92.6	08 43	87.308 92.643	minutes" mm"
	Ra	infall volume		0.00 38.091	59.2 6.87	9 [°] 8	59. 29 6. 878	C. M" mm"
	Ru	noff depth noff volume		54. 551 0. 00	85.7 54.8	65 9	85.765 54.89	mm" C. M"

	Runoff coefficient	0.592	0.941	0.941	" / /
40	HYDROGRAPH Add Runoff	"	0.027	0. 027	C. III/ Sec
	4 Add Runoff " 0.027 0.02	.7 0.0	25 0	. 109"	
" 52	CHANNEL DESIGN" 0.027 Current peak flow	c m/sec			
	0.015 Manni ng ' n' "	0.111/360			
	0. Cross-section type: 0.600 Basewidth metre"	0=trapez	oidal; 1	=general "	
	50.000 Left bank slope" 50.000 Right bank slope"				
	1.000 Channel depth me	etre"			
	0.500 Gradient %" Depth of flow	0	. 034	metre"	
	Velocity Channel capacity	0 150	. 343 842	m/sec" c_m/sec"	
" " E O	Critical depth	0	. 030	metre"	
53	0.00 Zero Route Reach Le	ength (i	metre)"		
" " 40	0.027 0.02 HYDROGRAPH Combine	27 0. 02 113''	27 0	.109 c.m/se	ec"
	6 Combine "				
	TO ADS UNIT"				
	Maximum flow Hydrograph volume	0 299	. 136 . 035	c.m/sec" c.m"	
" " 40	0.027 0.02 HVDPOCRAPH Start Now	.7 0.0	27 0	. 136"	
40 	2 Start - New Tributa	ry"	y an a	10/11	
" 33	0.027 0.00 CATCHMENT 6"	0 0.0	27 0	. 136"	
	1 Triangular SCS" 1 Equal Length"				
	1 SCS method"				
	6 sump #6" 100.000 % Impervious"				
	0.065 Total Area" 23.300 ELow Length"				
	2.000 Overl and Sl ope"				
	23.300 Pervious Area 23.300 Pervious Length"				
	2.000 Pervious slope" 0.065 Impervious Area"				
	23.300 Impervious length"				
	0. 250 Pervi ous Manni ng ' n	1 U			
	83.000 Pervious SCS Curve 0.592 Pervious Runoff coe	No." efficient"			
	0.100 Pervious la/S coeff	icient"			
	0.015 Impervious Manning	'n'"			
	98.000 Impervious SCS Curv 0.941 Impervious Runoff c	'e No." :oefficien	t"		
	0.100 Impervious la/S coe	efficient" abstractio	on"		
	0.027 0.00	0 0.0	27 0	.136 c.m/se	ec"
	Surface Area	0.000	1 mper 0. 065	0. 065 0.	Area hectare"
	Time of concentration Time to Centroid	10. 128 107. 275	1.513 87.30	1.513 1 87.30	3 minutes")1 minutes"
	Rainfall depth	92.643	92.64	3 92.64	13 mm"
	Rainfall losses	0.00 38.096	6.883	6. 883	2 C. m 3 mm''
	Runoff depth Runoff volume	54.547 0.00	85.76 55.74	0 85.76 55.74	50 mm" 4 C.m"
	Runoff coefficient	0.592	0.941	0.941	
40	HYDROGRAPH Add Runoff	"	0.027	0. 027	C. III/ SEC
	4 Add Runoff " 0.027 0.02	.0.0	27 0	. 136"	
" 52	CHANNEL DESIGN" 0.027 Current neak flow				
	0. 015 Manni ng 'n' "	0.111/ 500			
	0. cross-section type: 0.600 Basewidth metre"	u=trapez	ordal; 1	=general "	
	50.000 Left bank slope" 50.000 Right bank slope"				
	1.000 Channel depth me	etre"			
	Depth of flow	0	. 034	metre"	

	Vel oc	i ty	0.343	m/sec"	
I	Cri ti	cal depth	0. 030	metre"	
53		Zero Route" ro Route Reach L	enath (metre	·) "	
10		0.027 0.0	27 0. 027	0.136 c.m/s	ec"
40	6 Co	mbine "	113		
	113 No TO	de #" ADS UNIT"			
	Maxim	um flow	0.164	c.m/sec"	
I.	Hydro	0.027 0.0	27 0. 027	0. 164"	
40	HYDRO 7 Co	GRAPH Confluen	ce 113"		
	113 No	de #"			
I.	Maxim	um flow	0. 164	c.m/sec"	
	Hydro	graph volume 0.027 0.1	354.779 64 0.027	C.M" 0.000"	
54	POND	DESIGN"	c m/coc"		
	0. 164 Cu 0. 012 Ta	rget outflow	c.m/sec"		
1	355.0 Hy 46. Nu	drograph volume mber of stages"	C. M"		
	268.818 Mi	nimum water leve	l metre"		
I	268.818 St	arting water lev	el metre"		
1	0 Ke	ep Design Data: Level Discharge	1 = True; 0 = F Volume"	al se"	
	26	8.818 0.0Ŏ0 8.843 0.017	0.0"		
	26	8. 869 0. 019	7.1"		
I	26	8.894 0.020 8.920 0.022	10.6"		
	26 26	8.945 0.023 8.970 0.024	17.6" 21.0"		
	26	8. 996 0. 026	27.7"		
I.	26	9.021 0.027 9.047 0.028	34.3 40.9"		
1	26 26	9.072 0.029 9.097 0.030	47.4" 53.8"		
	26	9. 123 0. 031	60. 1"		
	26	9. 174 0. 032 9. 174 0. 033	72.3"		
1	26 26	9.199 0.034 9.224 0.035	78.2" 84.0"		
	26	9.250 0.035	89.5"		
	26	9. 301 0. 037	94. o 99. 7"		
1	26 26	9.326 0.038 9.351 0.039	104.1" 108.2"		
	26	9.377 0.039	112.0"		
	26	9. 402 0. 040 9. 428 0. 041	115.7		
1	26 26	9.453 0.042 9.478 0.042	123. 1" 126. 7"		
	26	9.504 0.043	130.3"		
	20	9.555 0.044	134. 1"		
	26 26	9.580 0.045 9.605 0.046	134. 1" 134. 2"		
	26	9.631 0.046	134.3" 134.4"		
	20	9.682 0.048	134.5"		
1	26 26	9.707 0.048 9.732 0.049	134.6" 134.7"		
	26	9.758 0.050 9.783 0.050	134.8" 134.9"		
	20	9.809 0.051	135. 0"		
	26 26	9.834 0.051 9.859 0.052	135.1" 135.2"		
	26	9.885 0.053	135.4" 136.1"		
	20	9. 936 0. 054	137. 3"		
	26 1. OR	9. 961 0. 054 I FI CES''	139.5"		
	0r	ifice Orifice	Orifice Numbe	er of" Filces"	
	26	8. 620 0. 630	0. 1490	. 000"	
	Peak	OULIIOW	0.054	C. m/sec	

 Maximum Level	269.939 metre"
 Maximum storage	137.530 c.m"
 Centroidal lag	2.063 hours"
 0. 027 0. 164	0.054 0.000 c.m/sec"

Appendix B Stormwater Chamber

Elevation													
(m)	CBMH.1	300 dia. Pipe	ST.5	ADS UNIT	ST.4	300 dia. Pipe	ST.3	300 dia. Pipe	ST.2	300 dia. Pipe	Surface	Total	Description
	(m³)	(m ³)	(m³)	(m ³)									
268.818	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	BOTTOM OF STONE
268.843	0.00	0.130	0.00	3.455	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.59	
268.868	0.00	0.170	0.00	6.911	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.08	
268.894	0.00	0.210	0.00	10.366	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.58	
268.919	0.00	0.250	0.00	13.821	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.07	
268.945	0.00	0.290	0.00	17.276	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.57	
268.970	0.00	0.320	0.00	20.732	0.00	0.00	0.00	0.00	0.00	0.00	0.00	21.05	BOTTOM OF CHAMBER
268.995	0.029	0.350	0.00	27.358	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.74	
269.021	0.057	0.370	0.00	33.919	0.00	0.004	0.00	0.00	0.00	0.00	0.00	34.35	
269.046	0.086	0.390	0.00	40.391	0.00	0.030	0.00	0.011	0.00	0.00	0.00	40.91	
269.072	0.115	0.390	0.00	46.775	0.00	0.085	0.00	0.024	0.00	0.00	0.00	47.39	
269.097	0.144	0.390	0.00	53.048	0.00	0.150	0.00	0.038	0.00	0.005	0.00	53.77	
269.122	0.172	0.390	0.00	59.189	0.00	0.230	0.00	0.053	0.00	0.023	0.00	60.06	5 YR. STORM ELEV = 269.110
269.148	0.201	0.390	0.00	65.195	0.00	0.320	0.00	0.069	0.00	0.063	0.00	66.24	
269.173	0.230	0.390	0.00	71.070	0.00	0.400	0.00	0.086	0.00	0.120	0.00	72.30	
269.199	0.259	0.390	0.000	76.769	0.00	0.490	0.00	0.100	0.00	0.210	0.00	78.22	
269.224	0.287	0.390	0.000	82.268	0.00	0.580	0.00	0.120	0.00	0.320	0.00	83.97	
269.249	0.316	0.390	0.009	87.546	0.00	0.650	0.00	0.130	0.00	0.450	0.00	89.49	
269.275	0.345	0.390	0.020	92.557	0.00	0.730	0.00	0.140	0.00	0.620	0.00	94.80	
269.300	0.373	0.390	0.031	97.217	0.00	0.780	0.00	0.150	0.00	0.800	0.00	99.74	
269.326	0.402	0.390	0.042	101.260	0.011	0.810	0.011	0.150	0.00	1.010	0.00	104.09	
269.351	0.431	0.390	0.053	105.057	0.023	0.820	0.023	0.150	0.00	1.210	0.00	108.16	
269.376	0.460	0.390	0.065	108.642	0.034	0.820	0.034	0.150	0.000	1.400	0.00	111.99	TOP OF CHAMBER
269.402	0.488	0.390	0.076	112.097	0.045	0.820	0.045	0.150	0.002	1.580	0.00	115.69	
269.427	0.517	0.390	0.087	115.553	0.056	0.820	0.056	0.150	0.031	1.730	0.00	119.39	
269.453	0.546	0.390	0.098	119.008	0.067	0.820	0.067	0.150	0.059	1.860	0.00	123.07	
269.478	0.575	0.390	0.110	122.463	0.079	0.820	0.079	0.150	0.088	1.950	0.00	126.70	
269.503	0.603	0.390	0.121	125.919	0.090	0.820	0.090	0.150	0.117	2.030	0.00	130.33	
269.529	0.632	0.390	0.132	129.374	0.101	0.820	0.101	0.150	0.146	2.080	0.00	133.93	TOP OF STONE
269.554	0.661	0.390	0.143	129.374	0.112	0.820	0.112	0.150	0.174	2.110	0.00	134.05	
269.580	0.689	0.390	0.154	129.374	0.124	0.820	0.124	0.150	0.203	2.120	0.00	134.15	
269.605	0.718	0.390	0.166	129.374	0.135	0.820	0.135	0.150	0.232	2.120	0.00	134.24	
269.630	0.747	0.390	0.177	129.374	0.146	0.820	0.146	0.150	0.261	2.120	0.00	134.33	
269.656	0.776	0.390	0.188	129.374	0.157	0.820	0.157	0.150	0.289	2.120	0.00	134.42	
269.681	0.804	0.390	0.199	129.374	0.168	0.820	0.168	0.150	0.318	2.120	0.00	134.51	
269.707	0.833	0.390	0.211	129.374	0.180	0.820	0.180	0.150	0.347	2.120	0.00	134.60	
269.732	0.862	0.390	0.222	129.374	0.191	0.820	0.191	0.150	0.375	2.120	0.00	134.69	
269.757	0.891	0.390	0.233	129.374	0.202	0.820	0.202	0.150	0.404	2.120	0.00	134.79	
269.783	0.919	0.390	0.244	129.374	0.213	0.820	0.213	0.150	0.433	2.120	0.00	134.88	
269.808	0.948	0.390	0.255	129.374	0.225	0.820	0.225	0.150	0.462	2.120	0.00	134.97	
269.834	0.977	0.390	0.267	129.374	0.236	0.820	0.236	0.150	0.490	2.120	0.00	135.06	
269.859	1.005	0.390	0.278	129.374	0.247	0.820	0.247	0.150	0.519	2.120	0.010	135.16	
269.884	1.034	0.390	0.289	129.374	0.258	0.820	0.258	0.150	0.548	2.120	0.160	135.40	
269.910	1.063	0.390	0.300	129.374	0.269	0.820	0.269	0.150	0.577	2.120	0.720	136.05	
269.935	1.092	0.390	0.312	129.374	0.281	0.820	0.281	0.150	0.605	2.120	1.870	137.29	100 YR. STORM ELEV = 269.939
269.961	1.120	0.390	0.323	129.374	0.292	0.820	0.292	0.150	0.634	2.120	3.960	139.47	

SWM STORAGE - UNDERGROUND CHAMBER UNIT AND UPSTREAM PIPES

VOLUME CALCULATION DOES NOT INCLUDE CATCHBASIN LEEDS AND CATCHBASIN STORAGE

PROJECT INFORMATION

ENGINEERED	VIVEK SHARMA
PRODUCT	647-463-9803
MANAGER:	VIVEK.SHARMA@ADS-PIPE.COM
	ANDREW OKOLISAN
ADS SALES REP:	519-670-0564
	ANDREW OKOLISAN@ADS-PIPE.COM
PROJECT NO:	S080669

ADVANCED DRAINAGE SYSTEMS, INC.

HURON MOTOR PRODUCTS EXTER, ONTARIO -CANADA

STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740 OR SC-310. 1
- CHAMBERS SHALL BE MANUFACTURED FROM VIRGIN POLYPROPYLENE OR POLYETHYLENE RESINS. 2
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORT PANELS THAT 3 WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE 4 THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE CSA S6 CL-625 TRUCK AND THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE CERTIFIED TO CSA B184, "POLYMERIC SUB-SURFACE STORMWATER MANAGEMENT STRUTURES", AND MEET 5. ASTM F2922 (POLYETHYLENE) OR ASTM F2418-16 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBERS SHALL BE DESIGNED AND ALLOWABLE LOADS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE 6 FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. THE CHAMBER MANUFACTURER SHALL 7. SUBMIT THE FOLLOWING UPON REQUEST TO THE SITE DESIGN ENGINEER FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE:
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE SAFETY a FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY AASHTO FOR THERMOPLASTIC PIPE.
 - A STRUCTURAL EVALUATION SEALED BY A REGISTERED PROFESSIONAL ENGINEER THAT DEMONSTRATES THAT THE LOAD b. FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET. THE 50 YEAR CREEP MODULUS DATA SPECIFIED IN ASTM F2418 OR ASTM F2922 MUST BE USED AS PART OF THE AASHTO STRUCTURAL EVALUATION TO VERIFY LONG-TERM PERFORMANCE.
 - STRUCTURAL CROSS SECTION DETAIL ON WHICH THE STRUCTURAL EVALUATION IS BASED. С
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 8

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-310/SC-740 SYSTEM

- STORMTECH SC-310 & SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- 2 GUIDE"
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3. STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED.
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- 4 THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 150 mm (6") SPACING BETWEEN THE CHAMBER ROWS. 6.
- 7. EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 20-50 mm (3/4-2")
- 8. THE CONTRACTOR MUST REPORT ANY KNOWN DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- 9 ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

- 1 GUIDE"
- 2 THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED: NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
 - WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 900 mm (36") OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

2013 ADS. INC

STORMTECH SC-310 & SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/SC-780 CONSTRUCTION

STORMTECH SC-310 & SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

PROPOSED LAYOUT

- 130 STORMTECH SC-310 CHAMBERS
- 26 STORMTECH SC-310 END CAPS
- STONE ABOVE (mm)
- 152 152 STONE BELOW (mm)
- 40 % STONE VOID
- INSTALLED SYSTEM VOLUME (m³) 131.2 (PERIMETER STONE INCLUDED)
- SYSTEM AREA (m²) 347
- 78 SYSTEM PERIMETER (m)

PROPOSED ELEVATIONS

MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	271.814
MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	269.986
MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	269.833
MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	269.833
MINIMUM ALLOWABLE GRADE (TOP OF RIGID PAVEMENT):	269.833
TOP OF STONE:	269.528
TOP OF SC-310 CHAMBER:	269.376
300 mm X 200 mm MANIFOLD INVERT (200 mm PIPE):	269.059
300 mm ISOLATOR ROW INVERT:	268.994
200 mm BOTTOM CONNECTION INVERT :	268.985
BOTTOM OF SC-310 CHAMBER:	268.970
300 mm X 200 mm MANIFOLD INVERT (300 mm PIPE):	268.951
UNDERDRAIN INVERT:	268.818
BOTTOM OF STONE:	268.818

NOTES

- MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SE DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC ٠
- NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD
 - THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NEW . COVER REQUIREMENTS ARE MET.
 - THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC IN CAPACITY. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR DETE PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BAS ONCE THIS INFORMATION IS PROVIDED.

HURON MOTOR PRODUCTS EXTER, ONTARIO -CANADA DATE: 4/24/2018 DRAWN: PM PROJECT #: S080669 CHECKED: CJD	REV DWN CKD DESCRIPTION 4/25/2018 PM RWD UPDATE PER ENG 07-13-18 JKL GFI UPDATED PER ENG 07-13-18 JKL GFI UPDATED PER ENG	2010 Contract Contrac	ADVANCED IPAMAGE SYSTEMS, INC. SCALE = 1 : 200	2 OF 6
CCH SHEET #7 FOR MANIFOLD SIZING GUIDANCE. AND DESIGN CONSTRAINTS, IT MAY BE IFOLD COMPONENTS IN THE FIELD. SARY ADJUST GRADING TO ENSURE THE CHAMBER RMATION ON SOIL CONDITIONS OR BEARING NING THE SUITABILITY OF THE SOIL AND TONE DEPTH MAY BE INCREASED OR DECREASED	REV DWN CKD DESCRIPTION 4/25/2018 PM RMD UPDATE PER ENG	nm ADS N-12 CROWN MATCHING MANIFOLD T 19 mm BELOW CHAMBER BASE T 89 mm ABOVE CHAMBER BASE S 9 mm ABOVE CHAMBER BASE IN 3.81 m OF ADS GEOSYNTHETICS IN GEOTEXTILE OVER BEDDING INDERNEATH CHAMBER FEET FOR ECTION AT ALL CHAMBER INLET ROWS	FLOW 126 L/s MIN) 4640 TRUEMAN BLVD HILLARD, OH 43026	2

ACCEPTABLE FILL MATERIALS: STORMTECH SC-310 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	COMPACTION / I REQUIREM
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARE PER SITE DESIGN E PAVED INSTALLATIONS MAY MATERIAL AND PREPARATION
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 ¹ A-1, A-2-4, A-3 OR AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMPACTIONS AFTER MATERIAL OVER THE CHAMB COMPACT ADDITIONAL LAYERS LIFTS TO A MIN. 95% PROCTO WELL GRADED MATERIAL AN DENSITY FOR PROCESSEI MATERIALS. ROLLER GROSS NOT TO EXCEED 12,000 lbs (FORCE NOT TO EXCEED 20
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	NO COMPACTION RE
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 ¹ 3, 357, 4, 467, 5, 56, 57	PLATE COMPACT OR ROLL TO SURFACE. ²

PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY (

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT CO EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.

NOTES:

1. SC-310 CHAMBERS SHALL CONFORM TO THE REQUIREMENTS OF ASTM F2418 "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS", OR ASTM F2922

"STANDARD SPECIFICATION FOR POLYETHYLENE (PE) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".

- 2. SC-310 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. "ACCEPTABLE FILL MATERIALS" TABLE ABOVE PROVIDES MATERIAL LOCATIONS, DESCRIPTIONS, GRADATIONS, AND COMPACTION REQUIREMENTS FOR FOUNDATION, EMBEDMENT, AND FILL MATERIALS.
- 4. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 5. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 6. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

		20	Ś	A	M	Dr	S THE ULTIMA
DENSITY ENT				IO -CANAI	RAWN: F	HECKED: 0	VSTRUCTION. IT I
NGINEER'S PLANS. HAVE STRINGENT REQUIREMENTS.		MUICH		k, UN I AR	24/2018 D	380669 C	G PRIOR TO CON
2 12" (300 mm) OF ERS IS REACHED. IN 6" (150 mm) MAX OR DENSITY FOR D 95% RELATIVE D AGGREGATE VEHICLE WEIGHT 33 KN). DYNAMIC		HUKUN			DATE: 4/	PROJECT #: SI	SHALL REVIEW THIS DRAWIN
QUIRED.	PTION		REQUEST				ESIGN ENGINEER S UIREMENTS.
ACHIEVE A FLAT	DESCR	ATE PER ENG	ATED PER ENG				TIVE. THE SITE DI AND PROJECT REC
I, CRUSHED, COMPACTOR.	СКD	RWD UPD	GFI UPD				L I - REPRESENTA EGULATIONS, /
OMPACTION	V DWN	018 PM	5-18 JKL				I Fher Project Sable Laws, R
	RE	4/25/2	07-13				IGINEER OR O
8' 18" (2.4 m) 50 mm) MIN* MAX VE TO BE DETERMINED NE TO BE DETERMINED NE TO BE DETERMINED NE NGINEER 6" (150 mm) MIN					Detention+Retention+Water Quality	70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067 860-529-8188 888-892-2694 WWW.STORMTECH.COM	IDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN EN HE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEI
		4640 IRUEMAN BLVD	HILLIARD, OH 43026	TEMS, INC.			N PREPARED BASED ON INFORMATION PROVI SITE DESIGN ENGINEER TO ENSURE THAT TH
				ADVANCED DRAINAGE SYST			THIS DRAWING HAS BEEN RESPONSIBILITY OF THE
		3	3	si (DF	: I -	6

П

NOMINAL CHAMBER SPECIFICATIONS	
SIZE (W X H X INSTALLED LENGTH)	

CHAMBER STORAGE

WEIGHT

MINIMUM INSTALLED STORAGE*

34.0" X 16.0" X 85.4"	(864 mm)
14.7 CUBIC FEET	(0.42 m ³)
31.0 CUBIC FEET	(0.88 m³)
35.0 lbs.	(16.8 kg)

*ASSUMES 6" (152 mm) ABOVE, BELOW, AND BETWEEN CHAMBERS

PRE-FAB STUBS AT BOTTOM OF END CAP FOR PART NUMBERS ENDING WITH "B" PRE-FAB STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" PRE CORED END CAPS END WITH "PC"

PART #	STUB	Α	В	C
SC310EPE06T / SC310EPE06TPC	6" (150 mm)	9.6" (244 mm)	5.8" (147 mm)	
SC310EPE06B / SC310EPE06BPC	0 (130 mm)	9.0 (244 1111)		0.5" (13 mm)
SC310EPE08T / SC310EPE08TPC	8" (200 mm)	11.0" (302 mm)	3.5" (89 mm)	
SC310EPE08B / SC310EPE08BPC		11.9 (302 1111)		0.6" (15 mm)
SC310EPE10T / SC310EPE10TPC	10" (250 mm)	12.7" (222 mm)	1.4" (36 mm)	
SC310EPE10B / SC310EPE10BPC	10 (250 mm)	12.7 (323 1111)		0.7" (18 mm)
SC310EPE12B	12" (300 mm)	13.5" (343 mm)		0.9" (23 mm)

ALL STUBS, EXCEPT FOR THE SC310EPE12B ARE PLACED AT BOTTOM OF END CAP SUCH THAT THE OUTSIDE DIAMETER OF THE STUB IS FLUSH WITH THE BOTTOM OF THE END CAP. FOR ADDITIONAL INFORMATION CONTACT STORMTECH AT 1-888-892-2694.

* FOR THE SC310EPE12B THE 12" (300 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 0.25" (6 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

NOTE: ALL DIMENSIONS ARE NOMINAL

mm X 406 mm X 2169 mm)

16.0"

	1640 TELIEMAN BLVD		REV	DWN	СКD	DESCRIPTION		
Ę			4/25/2018	PM	RWD UF	DATE PER ENG		
5	HILLIAKD, OH 43026		07-13-18	JKL	GFI UF	DATED PER ENG. REQUEST		
S	ADVANCED DRAINAGE SYSTEMS. INC.						EXTER, ONT/	ARIO -CANADA
⊪ €								
) J		Detention + Retention + Water Quality					DATE 4/24/2018	DRAWN PM
EI								
Г		70 INWOOD ROAD, SUITE 3 ROCKY HILL CT 06067						
(860-529-8188 888-892-2694 WWW.STORMTECH.COM						CHECKED: WO
6	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVI RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT TH	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE E PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL	EER OR OTHER F	PROJECT F	REPRESEN	ITATIVE. THE SITE DESIGN ENGINEER SHAL S, AND PROJECT REQUIREMENTS.	L REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS THE UL

START END

0 mm) MIN \SHTO H-2		AIN BASIN	AASHTO H-20 CO 8" (203 mm) MIN TRAFFIC LOADS: ARE FOR GUIDEL ACTUAL CONCRE DESIGNED GIVINI LOCAL SOIL CON LOADING & OTHE FACTORS ADAPTER ANGLE ACCORDING TO F [6" (152 10" (4" (102 mm) MII 6" (152 mm) BACKFILL MATERI OF STRUCTURE S CLASS I OR II CRL AND BE PLACED U LIFTS AND COMPA	NCRETE SLAB I THICKNESS CONCRETE DIMENSIO INE PUPOSES ONLY. TE SLAB MUST BE G CONSIDERATION FO DITIONS, TRAFFIC R APPLICABLE DESIG S VARIABLE 0°- 360° PLANS VARIABLE SUMP DEF ACCORDING TO PLA mm) MIN ON 8-24" (20 254 mm) MIN ON 8-24" (20 254 mm) MIN ON 30" (750 mm) MIN ON 30" (750 mm) AL BELOW AND TO SI HALL BE ASTM D2321 ISHED STONE OR GR/ JNIFORMLY IN 12" (305)	DNS DR N NS 0-600 mm), '50 mm)] n) DES AVEL	AVE REV DWN CKD DESCRIPTION HURON MOTOR PRODUCTS	07-13-18 JKL GFI UPDATED PER ENG. REQUEST B10518 EXTER, ONTARIO -CANADA 2443	2430 t-us.com bate: 4/24/2018 DRAWN: PM	PROJECT #: S080669 CHECKED: CJD
8-30" (20 GRADE 12-30" (3 DRAINA FOR CC FOR CC FOR CC	S 20-750 mm) GRATES/ 70-50-05 300-750 mm) FRAMES 3ASIN TO BE CUSTON GE CONNECTION ST 3RRUGATED HDPE (A MPLETE DESIGN ANI SED CALLES DO COM	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL W D PRODUCT INFORMA	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO /ALL) & SDR 35 PVC TION: WWW.NYLOPL/	ACTED TO MIN OF 90% R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM	5		BUFORD, GA 322-	Nyloplast FAX (770) 932- WWW.INVIODIAS	
A B-30" (24 GRADE 12-30" (3 DRAINA FOR CC FOR CC TO ORE	S 200-750 mm) GRATES/3 70-50-05 300-750 mm) FRAMES 3ASIN TO BE CUSTOM GE CONNECTION ST GREUGATED HDPE (A MPLETE DESIGN ANI DER CALL: 800-821-67 DADT #	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL V D PRODUCT INFORMA 710	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO /ALL) & SDR 35 PVC TION: WWW.NYLOPL/	R ASTM A536 RADE 70-50-05 ETAILS ASTM D3212 AST-US.COM	5	1 BLVD 3440 VIEDANA	4 2020 BUFORD, GA	Nyloplast Fax (770) 932-	
8-30" (2) GRADE 12-30" (2) DRAINA FOR CC FOR CC FOR CC TO ORE	S 00-750 mm) GRATES/3 70-50-05 300-750 mm) FRAMES 300-750 mm) FRAMES 300-750 mm) FRAMES 300-750 mm) FRAMES GE CONNECTION ST GE CONNECTION ST WALLETE DESIGN AND DER CALL: 800-821-67 PART # 2808AG	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL V D PRODUCT INFORMA 10 GRATE/S PEDESTRIAN LIGHT	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC TION: WWW.NYLOPLA COLID COVER (STANDARD LIGHT	R ASTM A536 RADE 70-50-05 TAILS ASTM D3212 AST-US.COM	5	IEMAN BLVD		Nyloplast FXX (770) 332.	- • • • • • • • • • • • • • • • • • • •
IOTE: 8-30" (24 GRADE 12-30" (3 DRAINA FOR CC FOR CC FOR CC TO ORE A 8" (200 mm) 10"	S 200-750 mm) GRATES/3 70-50-05 300-750 mm) FRAMES 3ASIN TO BE CUSTOM GE CONNECTION ST PRRUGATED HDPE (A MMPLETE DESIGN ANI DER CALL: 800-821-67 PART # 2808AG 2810AC	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL W D PRODUCT INFORMA 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO /ALL) & SDR 35 PVC TION: WWW.NYLOPL/ SOLID COVER (STANDARD LIGHT DUTY STANDARD LIGHT	R ASTM A536 RADE 70-50-05 ETAILS ASTM D3212 AST-US.COM OPTIONS	5) TRUEMAN BLVD		Nyloplast Fax (770) 332.	• •
8-30" (20 GRADE 12-30" (3 DRAIN E DRAINA FOR CC FOR CC TO ORE A 8" 200 mm) 10" 250 mm) 12"	S 00-750 mm) GRATES/3 70-50-05 300-750 mm) FRAMES BASIN TO BE CUSTON GE CONNECTION ST ORRUGATED HDPE (A MPLETE DESIGN ANI DER CALL: 800-821-67 PART # 2808AG 2810AG	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL W D PRODUCT INFORMA 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC TION: WWW.NYLOPL/ STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD ASSHTO	R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM DPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY	5	4640 TRUEMAN BLVD		Nyloplast FAX (170) 332.	
OTE: 8-30" (20 GRADE 12-30" (C DRAINA FOR CC FOR CC TO ORE A 8" 200 mm) 10" 250 mm) 12" 300 mm)	S D0-750 mm) GRATES/3 70-50-05 300-750 mm) FRAMES BASIN TO BE CUSTOM GE CONNECTION ST ORRUGATED HDPE (A MPLETE DESIGN ANI DER CALL: 800-821-67 PART # 2808AG 2810AG 2812AG	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL W D PRODUCT INFORMA 10 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY PEDESTRIAN AASHTO H-10	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC TION: WWW.NYLOPL STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD AASHTO H-20	R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM OPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY		4640 TRUEMAN BLVD			
OTE: 8-30" (2) GRADE 12-30" (2) DRAINA FOR CC FOR CC FOR CC TO ORE A 8" 200 mm) 10" 250 mm) 12" 300 mm) 15" 375 mm)	S 200-750 mm) GRATES/3 70-50-05 300-750 mm) FRAMES 300-750 mm 400-750 mm 2808AG 2810AG 2812AG 2815AG	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL V D PRODUCT INFORMA 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY PEDESTRIAN AASHTO H-10 PEDESTRIAN AASHTO H-10	BE DUCTILE IRON PER CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC TION: WWW.NYLOPL COLID COVER (STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD AASHTO H-20 STANDARD AASHTO H-20	R ASTM A536 RADE 70-50-05 TAILS ASTM D3212 AST-US.COM DPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID AASHTO H-20 SOLID AASHTO H-20					
OTE: 8-30" (24 GRADE 12-30" (3 DRAIN E DRAINA FOR CC FOR CC TO ORE A 8" 200 mm) 10" 250 mm) 12" 300 mm) 15" 375 mm) 18" 450 mm)	S DO-750 mm) GRATES/3 70-50-05 300-750 mm) FRAMES 3ASIN TO BE CUSTOM GE CONNECTION ST DRRUGATED HDPE (A MMPLETE DESIGN ANI DER CALL: 800-821-67 PART # 2808AG 2810AG 2812AG 2815AG 2818AG	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL W D PRODUCT INFORMA 710 GRATE/S PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY PEDESTRIAN LIGHT DUTY PEDESTRIAN AASHTO H-10 PEDESTRIAN AASHTO H-10	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC TION: WWW.NYLOPL/ SOLID COVER (STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD AASHTO H-20 STANDARD AASHTO H-20	R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM OPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT H-20 SOLID AASHTO H-20 SOLID AASHTO H-20		4640 TRUEMAN BLVD		Nyloplast FAX (170) 332.	
OTE: 8-30" (20 GRADE 12-30" (2) DRAINA FOR CC FOR CC TO ORE A 8" 200 mm) 10" 250 mm) 15" 375 mm) 18" 450 mm) 24" 300 mm)	S DO-750 mm) GRATES/3 70-50-05 BOD-750 mm) FRAMES BASIN TO BE CUSTON GE CONNECTION ST DRUGATED HDPE (A MPLETE DESIGN AND DER CALL: 800-821-67 PART # 2808AG 2810AG 28112AG 28115AG 28118AG 2824AG	SOLID COVERS SHALL SHALL BE DUCTILE IR MANUFACTURED AC UB JOINT TIGHTNESS DS & HANCOR DUAL W D PRODUCT INFORMAT 710	BE DUCTILE IRON PE CON PER ASTM A536 G CORDING TO PLAN DI SHALL CONFORM TO (ALL) & SDR 35 PVC TION: WWW.NYLOPL/ STANDARD LIGHT DUTY STANDARD LIGHT DUTY STANDARD AASHTO H-20 STANDARD AASHTO H-20 STANDARD AASHTO H-20 STANDARD AASHTO	R ASTM A536 GRADE 70-50-05 ETAILS ASTM D3212 AST-US.COM DPTIONS SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID LIGHT DUTY SOLID AASHTO H-20 SOLID AASHTO H-20 SOLID AASHTO H-20 SOLID AASHTO H-20 SOLID AASHTO H-20 SOLID AASHTO H-20 SOLID AASHTO H-20 SOLID		4640 TRUEMAN BLVD		Nyloplast FAX (170) 332.	

